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ABSTRACT

The effect of signal decorrelation on the performance.of the Butterfly Search velocity estimator is examined. An
analytical approximation for the expected value of the Butterfly Search L(v) function is developed for three cases
of interest. The approximations are verified against synthesized echo data. It is found that the peak value of the
L(v) function is limited by the rate of signal decorrelation. The performance of the Butterfly Search on synthesized
data is calculated for varying SNRs and rates of decorrelation. The results show that improved performance may
be obtained by processing and averaging subsets of echo ensembles, rather than applying the Butterfly Search to
the entire ensemble simultaneously. For lower SNRs, processing the entire ensemble at once produces equivalent
or better results than subset processing. Results from echo data obtained in-vitro are presented which confirm the
simulations.
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1. INTRODUCTION

Color Doppler ultrasound is widely used for the clinical assessment of blood flow. Ultrasound techniques in general
offer several advantages. They are non-invasive, the acoustical energy used is not harmful when appropriate power
limitations are observed, images are produced in real time, and the associated equipment is relatively inexpensive.

Color Doppler systems provide a 2D map of blood velocity overlaid on a B-scan image. The signal processing
method of Kasai et al.! and extensions to it are found in the great majority of Color Doppler systems.? The principle
advantages of the Kasai method are its robustness and simplicity. Two shortcomings of the technique are often
cited: reduced resolution compared to B-mode images produced with comparable equipment, and a limited range of
distinguishable velocities. Several alternatives to Kasal processing have been proposed in the literature, including
cross-correlation,® Wide-Band Maximum-Likelihood Estimation (WBMLE)* and Butterfly Search® methods. Each
of these methods seeks to overcome both the limitations noted above.

The Butterfly Search finds the constant velocity which best describes the time shift among a group of echoes.
This is in contrast to cross-correlation methods that calculate the time shift between pairs of echoes and compute
a (possibly weighted) average of the results. One confounding issue for both techniques is that successive echoes
may not be perfectly correlated for a number of reasons - noise, velocity shear, beam focus effects and lateral target
movement, to name a few. Prior work by other researchers®” has investigated the effect of echo to echo decorrelation
on cross-correlation techniques. The goal of the present work is to determine the effect of echo decorrelation on the
Butterfly Search and how best adapt the Butterfly Search to cope with the decorrelation.

1.1. The Butterfly Search

The Butterfly Search is described in detail in two papers®® by Alam and Parker, and in Alam’s Ph.D thesis.” The
concept is, in short, to find the constant velocity which best explains the shift seen over an ensemble of echo signals
or A-lines. The method is most easily explained by considering a point target case.

The received signal for a point target on the beam axis from the nt® transducer firing, 7, (¢), may be approximated
as
ra(t) = Gb(t — 28 — ZnTppp) 0<t < Tpgr (1)
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where b(t) is the two-way transfer function of the transducer, G is a scale factor, do the depth at n = 0, c the speed
of sound and Tpgr the pulse repetition period (Tprr = p7 F) This model neglects beam diffraction effects and the
Doppler frequency shift of the signal.

Equation 1’s dependence on n is determined by the target velocity v. Any non-zero velocity results in a time
shift of the echo signal between pulses. If the signal is sampled at constant delay ——Q after each transducer burst,
the received signal becomes a time-dilated version of the transmit signal, as descrlbed by Newhouse.!® For a tvplcal
ultrasound system, which transmits a tone burst in Doppler mode, this means that the vector r( ) describes a
sampled, windowed sinusoid.

For v = 0, r,(t) is constant on n. If a time- varying delay 2 nTpgrr is introduced

2dy  2v 2
Tn(t, V) Gb(t — T - —C'TLTPRF + 771TPRF) (2)
and v is set equal to v, the same constant-on-n behavior is achieved. This is illustrated in Figure 1. If the value of
v for which 7, (¢, ) is constant can be found, then an estimate of velocity may be obtained.

Pulse Index

Figure 1. Butterfly Search signals for the ideal point-scatterer case.

A method for finding this constant value signal is provided in the L(v) function of Alam and Parker.” The
derivation of L begins with Schwartz’s inequality:

th nlgaln <Zlgl I2ZIgz (3)

where the equality is satisfied if and only if g; = kg2." Let g; be the re-sampled signal, and g, a constant value of
1. g2 is then a scaled version of the resampled signal for v = v. Dividing both sides by the left hand g; summation

yields

'Z—Egjgl— 5 o (4)



Note that the left hand side is less than or equal to a constant. Since equality is achieved only when g; = kga,
the left hand side will reach its peak only in the presence of a DC signal. Simplifying the above equation yields
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Inserting the re-sampled signal r,, (¢, v) for g; finally gives the expression for L(t,v)

271272-01 Tn(t,v) i
L )= ———————> 6
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This is the L(v) function on RF of Alam and Parker, expanded as a function of time (depth). L takes on a maximum
when v = v. Thus, the Butterfly Search involves calculating L(v) for a range of v and returning the v which
maximizes L as the estimate of velocity.

Since the amplitude of the RF signal varies sinuséidally with frequency fo while noise imposed on the signal
from various sources will have a constant mean-square value, calculating L(¢, ) on the basis of the raw RF signal is
likely to result in time-dependent performance, which is undesirable. This difficulty may be avoided by calculating
L(t,v) using either the analytic or quadrature representations of the RF signal. The analytic form may be found by
calculating the Hilbert transform of the RF signal, which may be implemented as a FIR filter. Calculation of L(t,v)
with the analytic RF signal is precisely the same as with the real RF signal. With a quadrature signal, the matched
filter is not a constant, but a complex sinusoid on n whose frequency depends on v. Separate matched filters must be
calculated for each value of v and applied in calculating L(¢,v) with quadrature signals. In either case, the cyclicly
varying performance problem is eliminated.

Although velocity resolution improves with the number of A-lines, several factors limit the number of A-lines
that may be used in the velocity estimate. Decorrelation of the echoes, due to lateral movement through the beam
and/or velocity gradient effects, is one limitation. Another is the spread of axial ranges included in an estimate,
which increases linearly with the number of A-lines used. For any non-zero beam-vessel angle, this can result in
the collection of data from targets with velocities significantly different from that of the central point. These effects
suggest that a small number of pulses could be expected to yield the best Butterfly estimate.

2. THEORY
2.1. Signal

Consider now the case illustrated in Figure 2. A cloud of independently distributed, sub-resolvable scatterers passes
through the ultrasound beam. The scatterers have axial velocity v, and lateral velocity v,. The successive echo
signals can no longer be assumed to be identical but for a time shift. Rather, the similarity between echo signals
depends on the lateral velocity and the lateral pulse width. If v, = 0, then successive pulses will differ only in time
delay. Likewise, low lateral velocities and wide pulses suggest greater correlation between successive pulses than high
lateral velocities and narrow pulses.

In this situation the resampled signals r are more meaningfully handled as random vectors than deterministic
functions of the pulse and scatterer positions. The statistics of any particular r will depend on the pulse shape, axial
and lateral velocity. Let us define a random vector Z representing any particular r(¢,v),

Z = z1,22,...,25) = [F1(t,v), Fa(t, V), ..., Pn(t, V)] (7)

where the 7;(t,v) are complex valued samples obtained from the Hilbert-transformed echo signals. Z is a vector of
correlated complex random variables with a Gaussian distribution,!! taken from the ensemble of echo signals. The
probability density function of Z is

fz(2) =

Z is defined completely by the correlation matrix Czz. The values of the matrix Czz will in general depend on T,
Uz, Uy, and on the pulse characteristics.
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Figure 2. Physical setup and flow signals for 2D velocity case.

2.1.1. Expected value of L

From the definition of the expected value of a function of a random variable,!? the mean value of L(t,v) is*

~—~
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Evaluation of the expected value is difficult in general because the elements of Z may be correlated. A numerical

integration might, after considerable computation, yield an answer, but this would provide little insight. However,

three specific cases of interest can be approximated. These are the cases of short pulses, uncorrelated additive noise,
and phase decorrelation.

Short Pulses (Uncorrelated Samples) In this case, the z; are uncorrelated. This occurs when

v =

% Tprf > Tpulse (10)

that is, the magnitude of difference between the target velocity and the velocity corresponding to the butterfly line
being calculated is great enough that the pulses do not lie in overlapping regions of tissue. Therefore, the samples are
independent. The resulting samples are uncorrelated, zero mean Gaussian distributed.!! The uncorrelated condition
is sufficient to calculate the expectation for L in such a case,

_ E E —1,+1(Z zj + 2iz )
Bl = E{l S P }

since E(z]z;) = E(zz}) = 0 for i # j.

*Note that | Y7z /Z] zlP =147 ZJ e (72 25 25) ) 3 ekl

=1, (11)




Uncorrelated Noise The next degree of complexity involves a constant signal in the presence of noise. In this
case, the random vector Z is described by

Z=[a+s a+s ... a+¢] (12)

where a is a real constant and ¢; = x; + jy;, where z and y are independent Gaussian random variables, with zero
mean and variance o2, representing additive noise. The expression for the expected value of L my be written

n—1 n * * *
202 as; + as? ag; + ag; S5+ sis!
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The last three expectations in the double sum can be approximated as zero. Thus we are left with the simplified

expression
B} - 1020 % ({emr)) -

i=1 i=j+1

The modified Rician probability density function of zy was found by Goodman.!® Using the central limit theorem
the random variable described by the summation in the denominator may be approximated as Gaussian with a mean
of n(20% + a®) and variance of 4no*(1 + %;) Using the method of approximation by moments,'? a first-order
estimate of the expected value is given by

(n—1)a?
E{L} =1+ 5% (15)
noting that Z Z jeit1 L Z" ln = "22— % This approximation is plotted in Figure 3 for a range of values of the

ratio a/o, along Wlth mean values of L for ensembles of 10* computer-generated random vectors with the specified
values of a and o.
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Figure 3. Expected value of L as a function of ¢ with n = 4. o’s denote mean estimated from an ensemble of 104
random vectors.

Correlated Z For the general case where the elements of Z are correlated calculation of the expected value becomes
more difficult. We define Z as
Z=(z1+61,22 +S2,...,Zn + Sn) (16)

with ¢; as described above. The z; are correlated complex Gaussian random variables with correlation matrix C.,.



The expression for the expected value is then

The last three expected values can be taken to be zero. The leftmost expectation presents a problem in that
the numerator and denominator terms are not indepeﬁdent. In order to attempt an analytical approximation, the
denominator will be replaced by a constant, determined as in the uncorrelated noise case above. This accurately
models the case where the elements of Z differ only in phase. It also provides a fair approximation for slowly varying
envelope amplitude, as will be shown below. We will show that for even small values of n this is a fair approximation.
Thus simplified, the expression may be rewritten as

BE{L} =1+ ——"—— Z Z R(E{ziz}}) (18)

i=1 j=i+1

where R(£) is the real part of £. With this expression arrived at, it is possible to determine how the expected value
of L behaves as a function of n, given a correlation matrix C. A case of particular interest is that in which the
butterfly line being estimated represents the correct axial target velocity, while a lateral flow component results in
decreasing correlation with increasing temporal separation of pulses. It is reasonable to expect that the elements of
the correlation matrix C;; depend only on the difference j — i, and that R(Cy;) = f(j — ¢). This allows the double
summation to be reduced to a single sum

n—1

2 [¢
E{L}:1+mzzf(n—z) (19)

A simple but plausible model for the correlation between pulses® is given by

a?(b—|i—j]) li—j|<b
R(Cij) = R(E{z:2]}) = b J1= 20
(Cig) = R(BAzi2]}) S { 0 otherwise (20)
After substituting into the expression for E{L} and performing some tedious algebra we arrive at
a g—n +3bn—3b+1
E{L}: 3b(a +207) n<b+l (21)
b—1- 1’-2—_—1) n>b+1
E o2 3n

The expected value of L is described by a quadratic for n < b+ 1, while for n > b+ 1 the expected value slowly

increases from the n = b 4+ 1 value and reaches a limit of a—é%z as n — 0o. The expected value of L as a function

of n is plotted in Figure 4 for several values of b and o to illustrate the general behavior of the function.

This expression suggests how best to process a collection of RF samples with the Butterfly Search. When the
correlation between RF samples is high over all n samples, that is, when b > n, E{L} increases steadily with n. The
expected value of L does not increase substantially for n > b. Therefore, there is no benefit in using more than about
b pulses in the Butterfly calculation. This is not to say that more than b pulses are not helpful. If additional pulses
are available, they may still be put to good use by splitting the data into sets. Suppose 2b pulses are available for
processing. A single Butterfly over the 2b pulses is little better than a Butterfly over b pulses. However, 2 Butterflies
of b pulses may be averaged, with a consequent halving of the variance of L. This improves the probability that
the correct velocity is selected. This idea is illustrated in Figure 8, where the analytical approximation for E(L) for
the case of correlated samples is compared with the ensemble results from the data generated in the next section.
Notice that when using 16 A-lines, splitting the data into smaller sets produces a greater expected value for L than
processing all 16 A-lines in a single Butterfly, as predicted by the approximation.

3. SIMULATION

The expressions developed in the previous section for the expected value of L(t,v) are helpful in predicting the
behavior of the Butterfly Search under conditions of signal decorrelation and noise, but they do not provide the
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Figure 4. Expected value of L as a function of n. a = 1 for all traces.

complete picture. To estimate the performance of the Butterfly Search under these conditions, a simulation study
was carried out. Synthetic echo signals were generated with specific axial and lateral velocity and noise components.
The Butterfly Search was then used to estimate the axial velocity described by these signals. The use of synthetic
echo signals allowed the performance of the Butterfly Search to be estimated over a wide range of decorrelation and
noise conditions. Performance was gauged relative to Signal to Noise Ratio (SNR), number of A-lines used in the
estimate, lateral velocity, and processing technique.

To generate the simulated echo signals, an 8192x512 array of Gaussian-distributed random variates was created.
The spatial sampling frequency was fixed at 100um, and 1-D Gaussian-enveloped sinusoidal pulses (fo = 7.5MHz,
Oaxial = 0.13mm) were generated. The pulses were convolved with the 512 columns of the scatterer array to generate
RF signals. The contribution of each column to the final RF signal was weighted by the lateral beam profile (Gaussian,
o = 0.2mm) and summed to generate a single RF A-line. The process was repeated, using the same scatterer array,
with the lateral profile shifted by an amount determined by the lateral flow velocity for the particular simulation,
ranging between 0 and 0.5m/s. 50 A-lines were generated in each case. No stationary clutter or wall filtering was
simulated. Though wall filtering would be needed in a practical system, these simulations are concerned solely with
the performance of the Butterfly Search under conditidns of signal decorrelation and additive noise.

The performance for each rate of decorrelation as a function of the number of A-lines used in the Butterfly
calculation was found. The velocity was estimated at 600 points in each data set. The L(t, v) function was calculated
for —77 < v < 77cm/s. Note that this velocity range is greater than can be achieved with the Kasai-autocorrelation
method (+25c¢m/s), which is limited by sampling frequency considerations. The v were quantized in steps of 0.77cm/s.
Velocity estimates were calculated with odd integer numbers of A-lines, from 3 to 21, and the fraction of velocity
estimates within +3 bins, i.e. £2.3cm/s, stored. The results are plotted in Figures 5-7. It can be seen from the
figures that while using more A-lines in the calculation always produces a superior result, the sensitivity of the result
to the number of A-lines used increases with decreasing SNR.

To determine if averaging several smaller butterflies would produce better results than a single large butterfly, a
second simulation was performed. Using the same simulated echo data sets and velocity range as above, the butterfly
velocity estimate was calculated with 16 A-lines, using three different methods. The first was a straightforward
calculation using 16 A-lines in one large butterfly. The second used the average of the L(¢,v) of two butterflies of 8
A-lines each. The third used the average of the L(¢,v) of 4 butterflies of 4 A-lines each. In all cases, the maximum
of the resulting L(t,v) was selected as the velocity estimate. The results are compiled in Table 1.
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Table 1. Fraction of estimates within +3 velocity bins of correct value. n=16. x:y indicates x Butterflies of y
A-lines.

SNR = oo

Ulateral(m/s)
0.00 0.01 0.02 0.05 0.10 0.20 0.50
1:16 || 1.00 1.00 1.00 1.00 1.00 0.96 0.69
2:8 1.00 1.00 1.00 1.00 1.00 0.97 0.72
4:4 || 1.00 1.00 1.00 1.00 1.00 1.00 0.86

SNR = 6dB

Ulateral(m/s)
0.00 0.01 0.02 0.05 0.10 0.20 0.50
1:16 || 0.88 0.89 0.90 090 0.89 0.88 0.63
2:8 0.81 0.84 0.84 0.82 0.83 0.87 0.63
4:4 | 072 073 0.72 073 076 0.82 0.71

SNR = 0dB

Ulateral(m/s)
0.00 0.01 0.02 0.05 0.10 0.20 0.50
1:16 | 0.69 0.71 0.70 0.69 0.68 0.67 0.42
2:8 0.58 0.61 0.63 060 059 064 0.44
4:4 0.45 0.46 0.48 0.47 0.45 0.54 041

4. EXPERIMENT

As a further check of the analysis presented here, a water-tank experiment was performed. Ultrasound echoes from
a moving target were acquired with a commercial medical scanner (HP Sonos-100), which has been modified to
provide RF output and timing signals. The mechanically-steered transducer used had a center frequency of 2.5MHz.
The target consisted of a block of tissue-mimicking material, attached to a linear translation stage. The computer-
controlled stage allows for movement of the block in 2.5um steps. The ultrasound transducer was mounted on a
gimbal such that the angle between the ultrasound beam and the linear stage could be varied over a range of 0-60
degrees in 15 degree increments. The transducer to target distance was arranged to keep the target at or beyond
the focus of the ultrasound beam. 160 echo signals were generated for each angle, with a translation of 75 microns
occurring between each echo. The RF signals were captured with a digital oscilloscope (LeCroy 9430) and transfered
to disk for later processing. The SNR was in excess of 20dB.

Figure 9 illustrates the results of two Butterfly processing techniques on the water-tank data. The first method
was to compute the Butterfly estimate based on a single L calculation using 16 A-lines. The second was to average 4
L calculations, each with 4 A-lines. To emphasize the effect of decorrelation, the A-line data was subsampled in pulse
index, resulting in a translation of 225um between A-lines. For a 5kHz pulse repetition frequency, this is equivalent
to a target velocity of 1.1m/s. The data points presented in Figure 9 represent the average of 400 trials. As in the
computer simulations, the average of smaller Butterflies performs better than a single large Butterfly in the presence
of signal decorrelation, when the SNR is high.
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Figure 9. Performance of Butterfly estimator on water tank data versus angle. Circles denote data points for
calculation using a one Butterfly of 16 A-lines. Squares indicate results for the average of four Butterflies of four
A-lines each..

5. CONCLUSION

The effect of echo-to-echo decorrelation on Butterfly Search estimation has been assessed. An analytical approxi-
mation to the expected value of the L function has been found for several cases of interest, and all are found to be
in good agreement with results obtained by ensemble averaging. The approximations indicate that the maximum
value of the L function is limited by the rate of signal decorrelation. Simulations show that this correlates well with
the performance achieved by the Butterfly Search on decorrelated data. Finally, it is found that by processing echo
ensembles in subsets and averaging the results, superior performance may be achieved compared to that obtained
by processing the echo ensemble in one Butterfly. This performance improvement is limited by the SNR of the
echo ensemble. Future work may investigate methods for automatically selecting the optimum Butterfly processing
technique, based on the signals to be processed.
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